The distance-regular graphs with valency k≥2, diameter D≥3 and kD−1+kD≤2k

نویسندگان

چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Valency of Distance-regular Antipodal Graphs with Diameter 4

Let G be a non-bipartite strongly regular graph on n vertices of valency k. We prove that if G has a distance-regular antipodal cover of diameter 4, then k ≤ 2(n + 1)/5 , unless G is the complement of triangular graph T (7), the folded Johnson graph J (8, 4) or the folded halved 8-cube. However, for these three graphs the bound k ≤ (n − 1)/2 holds. This result implies that only one of a complem...

متن کامل

The Distance-Regular Graphs of Valency Four

We show that each distance-regular graph of valency four has known parameters.

متن کامل

Triangle-free distance-regular graphs with an eigenvalue multiplicity equal to their valency and diameter 3

In this paper, triangle-free distance-regular graphs with diameter 3 and an eigenvalue θ with multiplicity equal to their valency are studied. Let Γ be such a graph. We first show that θ = −1 if and only if Γ is antipodal. Then we assume that the graph Γ is primitive. We show that it is formally self-dual (and hence Q-polynomial and 1-homogeneous), all its eigenvalues are integral, and the eige...

متن کامل

Tight Distance-regular Graphs with Small Diameter

We prove the following bound for a k regular graph on n vertices with nontrivial eigenvalues from the interval r s n k rs k r k s Equality holds if and only if the graph is strongly regular with eigenvalues in fk s rg Nonbipartite distance regular graphs with diameter d and eigenvalues k d whose local graphs satisfy the above bound with equality for s b and r b d are called tight graphs and are...

متن کامل

On distance-regular graphs with fixed valency, II

Let I’= (A’, R) be an undirected graph without loops and multiple edges, where X and R are the vertex and edge sets. For two vertices x, y E A’, the integer (3(x, y) denotes the distance between x and I’, i.e., the length of the shortest path between them. For x E X, T,(x) denotes the set of vertices having distance i from x. The graph Iis said to be distance-regular if r is connected and if th...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Discrete Mathematics

سال: 2017

ISSN: 0012-365X

DOI: 10.1016/j.disc.2016.09.022